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Motivation
Classificaiton problem

e Give input x, predict the label y.
- x: feature vector
- y: class label
® Example:
- x: monthly income and bank saving account
y: whether a person will buy a house or not (binary class)
- Review text for a product

y: sentiment positive, negative, or neutral (multi-class)
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Motivation
Binary linear classifer
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Figure: Binary linear classifier [1].

® wy and wy are the parameters of the linear classifier.

® The decision boundary: wix; + waxo = 0.
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0, Parameter and Observation Vectors
Logistic regression

e |ogistic regression is a linear classification model that is widely
used in machine learning and statistics.

® Dataset: {(x;,y;)}"_; are assumed to be independent and
identically distributed.

® The observation vector is x; = [x1 ... xq] T eRrd.
y; € {0,1} is its label.

. T
® The parameter vector is w = [Wl Wd] € RY.
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Probabilistic Model
E

Logistic regression

® The logistic function models the conditional probability:

e(WTX)y
p(y|x; w) = T e (1)
® The joint probability model of the observations:
ne(wixi)yi
e
p(X,ylw) = H 14 ewix’ (2)

i=1

where X =[x/, xJ,....,x[Tand y = [y1,y2, ..., ya] T [2]-
® The log-likelihood function:

n

Iw) = [yiwx;) —log(1+e* ™), (3)

i=1
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AN
VP CRLB Analysis

® Fisher information matrix;
e

= — m = —WTX XX
FIM = IE[[ ] =B | g T] : »

(a2 — ozo)uluir + ao'} , X~ N(0,02|).

where uy = 2, oy = E [%zk] and z ~ N(0,1).

e CRLB:

1 —
CRLB = FIM™1 = — [l — O‘°u1u{] , (5

e MSE:

d
E(|| W — w ||*) > tr(CRLB) = ZCRLBH, (6)
i=1
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o=
E‘ Likelihood of ML Estimation

® The log-likelihood function:
I(w) = > (vi(w"xi) — log(1+ €% (7)

i=1

e Optimization problem:
n T
WyLE = arg mvexlz_:l (y;(wa;) — log(1+ &% x")) , (8
® The gradient of the log-likelihood function:
n wix:
Vul(w) =3 (y,- - 1+—w> i, (9)

i=1
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0, Iterative Scaling Approach
Version 1

® |terative scaling iterations [3]:
~old\ T
1 Zi\y,-x,-k>o(1 - O-(.yl (W ) Xi))|X,'k|
og

W = W't + 25 ~old) T
Zib’ixik<0(1 B U(yi (W > Xi))’Xik’
(10)

)

1
14+e— 2"

where s = max; Y, |xi| and o(z) =

Algorithm 1 lIterative Scaling Approach Version 1.
1: Initialization: Set t =0, w(® X,y
2: Repeat
3: s =max; y_, |Xil|;

T
Z:"ly,'Xi/oo(1_"(}"'(""(t)) Xi))\Xik|_

A(EFL) () 1
4: pr— I !
W Wi~ + 35 log (1—o (i (WD) " xi)) il

ilYiXik<o

5 t=t+1;
6: Until convergence
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Iterative Scaling Approach
@*& Version 2

® |terative scaling iterations [4]:

1 By + \/ B + 4A1x Az

W = W + S log AL ,
where y
Ak = 2 Z (|X/I<| +Xlk)pl( ° )
Aok = 5 3 i([xik| — xik)pi (W), (12)
Bj =3 i xiyi,
~ old eXITWOId
and p;(w%9) = Ty e TR S =max; Y |kl
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Iterative Scaling Approach
@*& Version 2

Algorithm 2 lIterative Scaling Approach Version 2.
1: Initialization: Set t =0, w(® X,y

2: Repeat
30 S =max; >, [xil;
& pi(@d) = e
1+exi w(f) !
5: Awk = 3 32 (Ixik| + xiw) pi(W();
6: Agk = 5 30, (Ixiel — xin)pi(WD);
7 Bj =3 Xiyi;
8 (™ = 4® 4 Log Bk+\/B2A'f1‘jA1kA2k>
9 t=1t+1;

10: Until convergence
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R
S  Gradient Descent Approach

® Gradient descent iterations:
Wwew — WOId + UVW/(WOM)

AoIdT
. Xi (13)
Old +n Z Yi — Aold Xj,

where 7) is the step size.

Algorithm 3 Gradient Descent Approach.
1: Initialization: Set t =0, w(® X,y
2: Repeat
3 W) = W) 4 v, /(W(D),

\Tv(t) Tx,-

1+e(w(t))TX"

4 t=t+1;
5: Until convergence

December 12, 2023 11/17




Experimental Results
CRLB and MSE as a function of the data size n
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Figure: CRLB and MSE of ML estimations as a function of n for w = [1,1]7+/2.
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Experimental Results
CRLB and MSE as a function of the data size n
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Figure: CRLB and MSE of ML estimations (no regularization, h-regularization) as a
function of n with d = 2 for different values of o2.
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Experimental Results
CRLB and MSE as a function of the norm of || w ||
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Figure: CRLB and MSE as a function of || w || for n € {50,100, 1000}.
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Experimental Results
CRLB and MSE of ML estimation
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Figure: CRLB and MSE of ML estimations (no regularization, / -regularization) as a
function of || w || with d = 2 for (a) n =50 and (b) n = 1000.
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Conclusion

® The CRLB and MSE of ML estimation are derived.

® The iterative scaling and gradient descent approaches are used
to estimate the parameter vector.

e The CRLB and MSE of ML estimation are compared with the
iterative scaling and gradient descent approaches.
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