PROJECT II: LOGISTIC REGRESSION ECE565: Estimation, Filtering, and Detection

Nam Nguyen

December 12, 2023

Motivation Classification problem

- Give input x, predict the label y.
 - x: feature vector
 - y: class label
- Example:
 - x: monthly income and bank saving account
 y: whether a person will buy a house or not (binary class)
 - Review text for a product
 - y: sentiment positive, negative, or neutral (multi-class)

December 12, 2023 2/1

Motivation Binary linear classifer

Figure: Binary linear classifier [1].

- w_1 and w_2 are the parameters of the linear classifier.
- The decision boundary: $w_1x_1 + w_2x_2 = 0$.

December 12, 2023 3/

Parameter and Observation Vectors Logistic regression

- Logistic regression is a linear classification model that is widely used in machine learning and statistics.
- Dataset: $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$ are assumed to be independent and identically distributed.
- The observation vector is $\mathbf{x}_i = \begin{bmatrix} x_1 & \dots & x_d \end{bmatrix}^T \in \mathbb{R}^d$. $y_i \in \{0,1\}$ is its label.
- The parameter vector is $\mathbf{w} = \begin{bmatrix} w_1 & ... & w_d \end{bmatrix}^T \in \mathbb{R}^d$.

December 12, 2023 4/1

Probabilistic Model

Logistic regression

• The logistic function models the conditional probability:

$$p(y|\mathbf{x}; \mathbf{w}) = \frac{e^{(\mathbf{w}^T \mathbf{x})y}}{1 + e^{\mathbf{w}^T \mathbf{x}}},$$
 (1)

The joint probability model of the observations:

$$p(\mathbf{X}, \mathbf{y}|\mathbf{w}) = \prod_{i=1}^{n} \frac{e^{(\mathbf{w}^T \mathbf{x}_i)y_i}}{1 + e^{\mathbf{w}^T \mathbf{x}_i}},$$
 (2)

where
$$\mathbf{X} = [\mathbf{x}_1^T, \mathbf{x}_2^T, ..., \mathbf{x}_n^T]$$
 and $\mathbf{y} = [y_1, y_2, ..., y_n]^T$ [2].

• The log-likelihood function:

$$I(\mathbf{w}) = \sum_{i=1}^{n} \left[y_i(\mathbf{w}^T \mathbf{x}_i) - \log(1 + e^{\mathbf{w}^T \mathbf{x}_i}) \right],$$
 (3)

December 12, 2023 5/

CRLB Analysis

Fisher information matrix:

$$\begin{aligned} \mathsf{FIM} &= -\mathbb{E}\left[\frac{d^2 I(\mathbf{w})}{d\mathbf{w}\mathbf{w}^T}\right] = n\mathbb{E}\left[\frac{e^{\mathbf{w}^T\mathbf{x}}}{(1 + e^{\mathbf{w}^T\mathbf{x}})^2}\mathbf{x}\mathbf{x}^T\right], \\ &= n\sigma^2\left[(\alpha_2 - \alpha_0)\mathbf{u}_1\mathbf{u}_1^T + \alpha_0\mathbf{I}\right], \ \mathbf{x} \sim N(\mathbf{0}, \sigma^2\mathbf{I}). \end{aligned}$$
where $\mathbf{u}_1 = \frac{\mathbf{w}}{\|\mathbf{w}\|}, \ \alpha_k = \mathbb{E}\left[\frac{e^{\sigma \|\mathbf{w}\|_2}}{(1 + e^{\sigma \|\mathbf{w}\|_2})^2}z^k\right] \text{ and } z \sim \mathcal{N}(\mathbf{0}, \mathbf{1}).$

CRLB:

$$CRLB = FIM^{-1} = \frac{1}{n\sigma^2\alpha_0} \left[I - \frac{\alpha_2 - \alpha_0}{\alpha_2} \mathbf{u}_1 \mathbf{u}_1^T \right], \quad (5)$$

MSE:

$$\mathbb{E}(\|\hat{\mathbf{w}} - \mathbf{w}\|^2) \ge \operatorname{tr}(\mathsf{CRLB}) = \sum_{i=1}^{d} \mathsf{CRLB}_{ii}, \tag{6}$$

December 12, 2023 6/3

Likelihood of ML Estimation

The log-likelihood function:

$$I(\mathbf{w}) = \sum_{i=1}^{n} \left(y_i(\mathbf{w}^T \mathbf{x}_i) - \log(1 + e^{\mathbf{w}^T \mathbf{x}_i}) \right), \tag{7}$$

Optimization problem:

$$\hat{\mathbf{w}}_{MLE} = \arg\max_{\mathbf{w}} \sum_{i=1}^{n} \left(y_i(\mathbf{w}^T \mathbf{x}_i) - \log(1 + e^{\mathbf{w}^T \mathbf{x}_i}) \right), \quad (8)$$

• The gradient of the log-likelihood function:

$$\nabla_{\mathbf{w}}I(\mathbf{w}) = \sum_{i=1}^{n} \left(y_i - \frac{e^{\mathbf{w}^T \mathbf{x}_i}}{1 + e^{\mathbf{w}^T \mathbf{x}_i}} \right) \mathbf{x}_i, \tag{9}$$

December 12, 2023 7/

Iterative Scaling Approach

Version 1

• Iterative scaling iterations [3]:

$$\hat{w}_{k}^{new} = \hat{w}_{k}^{old} + \frac{1}{2s} \log \frac{\sum_{i|y_{i}x_{ik>0}} (1 - \sigma(y_{i} \left(\hat{\mathbf{w}}^{old}\right)^{T} \mathbf{x}_{i}))|x_{ik}|}{\sum_{i|y_{i}x_{ik<0}} (1 - \sigma(y_{i} \left(\hat{\mathbf{w}}^{old}\right)^{T} \mathbf{x}_{i}))|x_{ik}|},$$

$$\text{where } s = \max_{i} \sum_{k} |x_{ik}| \text{ and } \sigma(z) = \frac{1}{1 + e^{-z}}.$$

$$(10)$$

Algorithm 1 Iterative Scaling Approach Version 1.

- 1: Initialization: Set t = 0, $\hat{\mathbf{w}}^{(0)}$, X, y
- 2: Repeat
- 3: $s = \max_i \sum_k |x_{ik}|$;

4:
$$\hat{w}_k^{(t+1)} = \hat{w}_k^{(t)} + \frac{1}{2s} \log \frac{\sum_{i|y_i \times i_k > 0} (1 - \sigma(y_i(\hat{\mathbf{w}}^{(t)})^T \mathbf{x}_i))|x_{ik}|}{\sum_{i|y_i \times i_k < 0} (1 - \sigma(y_i(\hat{\mathbf{w}}^{(t)})^T \mathbf{x}_i))|x_{ik}|};$$

- 5: t = t + 1;
- 6: Until convergence

December 12, 2023 8/1

Iterative Scaling Approach Version 2

• Iterative scaling iterations [4]:

$$\hat{w}_k^{new} = \hat{w}_k^{old} + \frac{1}{S} \log \left(\frac{B_k + \sqrt{B_k^2 + 4A_{1k}A_{2k}}}{2A_{1k}} \right), \quad (11)$$

where

$$\begin{cases}
A_{1k} = \frac{1}{2} \sum_{i} (|x_{ik}| + x_{ik}) p_{i}(\hat{\mathbf{w}}^{old}), \\
A_{2k} = \frac{1}{2} \sum_{i} (|x_{ik}| - x_{ik}) p_{i}(\hat{\mathbf{w}}^{old}), \\
B_{j} = \sum_{i} x_{ik} y_{i},
\end{cases} (12)$$

and
$$p_i(\hat{\mathbf{w}}^{old}) = \frac{e^{\mathbf{x}_i^T \hat{\mathbf{w}}^{old}}}{1 + e^{\mathbf{x}_i^T \hat{\mathbf{w}}^{old}}}$$
, $S = \max_i \sum_k |x_{ik}|$.

December 12, 2023 9/:

Iterative Scaling Approach

Version 2

Algorithm 2 Iterative Scaling Approach Version 2.

- 1: Initialization: Set t = 0, $\hat{\mathbf{w}}^{(0)}$, X, y
- 2: Repeat

3:
$$S = \max_i \sum_k |x_{ik}|$$
;

4:
$$p_i(\hat{\mathbf{w}}^{(t)}) = \frac{e^{x_i^T \hat{\mathbf{w}}^{(t)}}}{1 + e^{x_i^T \hat{\mathbf{w}}^{(t)}}};$$

5:
$$A_{1k} = \frac{1}{2} \sum_{i} (|x_{ik}| + x_{ik}) p_i(\hat{\mathbf{w}}^{(t)});$$

6:
$$A_{2k} = \frac{1}{2} \sum_{i} (|x_{ik}| - x_{ik}) p_i(\hat{\mathbf{w}}^{(t)});$$

7:
$$B_j = \sum_i x_{ik} y_i$$
;

8:
$$\hat{w}_k^{(t+1)} = \hat{w}_k^{(t)} + \frac{1}{5} \log \left(\frac{B_k + \sqrt{B_k^2 + 4A_{1k}A_{2k}}}{2A_{1k}} \right);$$

9:
$$t = t + 1$$
;

10: Until convergence

December 12, 2023 10/17

Gradient Descent Approach

Gradient descent iterations:

$$\hat{\mathbf{w}}^{new} = \hat{\mathbf{w}}^{old} + \eta \nabla_{\mathbf{w}} I(\hat{\mathbf{w}}^{old})$$

$$= \hat{\mathbf{w}}^{old} + \eta \sum_{i=1}^{n} \left(y_i - \frac{e^{\hat{\mathbf{w}}^{old}^T} \mathbf{x}_i}{1 + e^{\hat{\mathbf{w}}^{old}^T} \mathbf{x}_i} \right) \mathbf{x}_i, \tag{13}$$

where η is the step size.

Algorithm 3 Gradient Descent Approach.

- 1: Initialization: Set t = 0, $\hat{\mathbf{w}}^{(0)}$, X, y
- 2: Repeat

3:
$$\hat{\mathbf{w}}^{(t+1)} = \hat{\mathbf{w}}^{(t)} + \eta \nabla_{\mathbf{w}} I(\hat{\mathbf{w}}^{(t)}),$$

$$= \hat{\mathbf{w}}^{(t)} + \eta \sum_{i=1}^{n} \left(y_i - \frac{e^{\left(\hat{\mathbf{w}}^{(t)}\right)^T \mathbf{x}_i}}{1 + e^{\left(\hat{\mathbf{w}}^{(t)}\right)^T \mathbf{x}_i}} \right) \mathbf{x}_i;$$

- 4: t = t + 1:
- 5: **Until** convergence

Experimental Results

CRLB and MSE as a function of the data size n

Figure: **CRLB** and **MSE** of **ML** estimations as a function of *n* for $\mathbf{w} = [1, 1]^T \sqrt{2}$.

December 12, 2023 12/1

Experimental Results

CRLB and MSE as a function of the data size n

Figure: **CRLB** and **MSE** of **ML** estimations (no regularization, l_1 -regularization) as a function of n with d=2 for different values of σ^2 .

December 12, 2023 13/1

Experimental Results CRLB and MSE as a function of the norm of $\parallel \mathbf{w} \parallel$

Figure: **CRLB** and **MSE** as a function of $\|\mathbf{w}\|$ for $n \in \{50, 100, 1000\}$.

December 12, 2023 14/17

Experimental ResultsCRLB and MSE of ML estimation

Figure: **CRLB** and **MSE** of **ML** estimations (no regularization, I_1 -regularization) as a function of $\|\mathbf{w}\|$ with d=2 for (a) n=50 and (b) n=1000.

December 12, 2023 15/17

Conclusion

- The CRLB and MSE of ML estimation are derived.
- The iterative scaling and gradient descent approaches are used to estimate the parameter vector.
- The CRLB and MSE of ML estimation are compared with the iterative scaling and gradient descent approaches.

December 12, 2023 16/17

References

Xiaoli Z. Fern, "Logistic Regression," *Al534 Machine Learning*, Oregon State University, 2023.

T. Nguyen, R. Raich and P. Lai, "Jeffreys prior regularization for logistic regression," 2016 IEEE Statistical Signal Processing Workshop (SSP), Palma de Mallorca, Spain, 2016, pp. 1-5.

Thomas P Minka, "Algorithms for maximum-likelihood logistic regression," 2003.

R. Raich, "Iterative scaling note," Oregon State University, 2023.

December 12, 2023 17/1